Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MAGMA ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703246

RESUMO

OBJECTIVE: Diffusion-weighted MRI is a technique that can infer microstructural and microcirculatory features from biological tissue, with particular application to renal tissue. There is extensive literature on diffusion tensor imaging (DTI) of anisotropy in the renal medulla, intravoxel incoherent motion (IVIM) measurements separating microstructural from microcirculation effects, and combinations of the two. However, interpretation of these features and adaptation of more specific models remains an ongoing challenge. One input to this process is a whole organ distillation of corticomedullary contrast of diffusion metrics, as has been explored for other renal biomarkers. MATERIALS AND METHODS: In this work, we probe the spatial dependence of diffusion MRI metrics with concentrically layered segmentation in 11 healthy kidneys at 3 T. The metrics include those from DTI, IVIM, a combined approach titled "REnal Flow and Microstructure AnisotroPy (REFMAP)", and a multiply encoded model titled "FC-IVIM" providing estimates of fluid velocity and branching length. RESULTS: Fractional anisotropy decreased from the inner kidney to the outer kidney with the strongest layer correlation in both parenchyma (including cortex and medulla) and medulla with Spearman correlation coefficients and p-values (r, p) of (0.42, <0.001) and (0.37, <0.001), respectively. Also, dynamic parameters derived from the three models significantly decreased with a high correlation from the inner to the outer parenchyma or medulla with (r, p) ranges of (0.46-0.55, <0.001). CONCLUSIONS: These spatial trends might find implications for indirect assessments of kidney physiology and microstructure using diffusion MRI.

2.
Magn Reson Imaging ; 100: 93-101, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36924807

RESUMO

PURPOSE: Diffusion-weighted imaging (DWI) of the abdomen has increased dramatically for both research and clinical purposes. Motion and static field inhomogeneity related challenges limit image quality of abdominopelvic imaging with the most conventional echo-planar imaging (EPI) pulse sequence. While reversed phase encoded imaging is increasingly used to facilitate distortion correction, it typically assumes one motion independent magnetic field distribution. In this study, we describe a more generalized workflow for the case of kidney DWI in which the field inhomogeneity at multiple respiratory phases is mapped and used to correct all images in a multi-contrast DWI series. METHODS: In this HIPAA-compliant and IRB-approved prospective study, 8 volunteers (6 M, ages 28-51) had abdominal imaging performed in a 3 T MRI system (MAGNETOM Prisma; Siemens Healthcare, Erlangen, Germany) with ECG gating. Coronal oblique T2-weighted HASTE images were collected for anatomical reference. Sagittal phase-contrast (PC) MRI images through the left renal artery were collected to determine systolic and diastolic phases. Cardiac triggered oblique coronal DWI were collected at 10 b-values between 0 and 800 s/mm2 and 12 directions. DWI series were distortion corrected using field maps generated by forward and reversed phase encoded b = 0 images collected over the full respiratory cycle and matched by respiratory phase. Morphologic accuracy, intraseries spatial variability, and diffusion tensor imaging (DTI) metrics mean diffusivity (MD) and fractional anisotropy (FA) were compared for results generated with no distortion correction, correction with only one respiratory bin, and correction with multiple respiratory bins across the breathing cycle. RESULTS: Computed field maps showed significant variation in static field with kidney laterality, region, and respiratory phase. Distortion corrected images showed significantly better registration to morphologic images than uncorrected images; for the left kidney, the multiple bin correction outperformed one bin correction. Line profile analysis showed significantly reduced spatial variation with multiple bins than one bin correction. DTI metrics were mostly similar between correction methods, with some differences observed in MD between uncorrected and corrected datasets. CONCLUSIONS: Our results indicate improved morphology of kidney DWI and derived parametric maps as well as reduced variability over the full image series using the motion-resolved distortion correction. This work highlights some morphologic and quantitative metric improvements can be obtained for kidney DWI when distortion correction is performed in a respiratory-resolved manner.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Humanos , Adulto , Pessoa de Meia-Idade , Estudos Prospectivos , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Rim/diagnóstico por imagem , Imagem Ecoplanar/métodos , Movimento (Física)
3.
J Magn Reson Imaging ; 58(1): 210-220, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36399101

RESUMO

BACKGROUND: Renal diffusion-weighted imaging (DWI) involves microstructure and microcirculation, quantified with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM), and hybrid models. A better understanding of their contrast may increase specificity. PURPOSE: To measure modulation of DWI with cardiac phase and flow-compensated (FC) diffusion gradient waveforms. STUDY TYPE: Prospective. POPULATION: Six healthy volunteers (ages: 22-48 years, five females), water phantom. FIELD STRENGTH/SEQUENCE: 3-T, prototype DWI sequence with 2D echo-planar imaging, and bipolar (BP) or FC gradients. 2D Half-Fourier Single-shot Turbo-spin-Echo (HASTE). Multiple-phase 2D spoiled gradient-echo phase contrast (PC) MRI. ASSESSMENT: BP and FC water signal decays were qualitatively compared. Renal arteries and velocities were visualized on PC-MRI. Systolic (peak velocity), diastolic (end stable velocity), and pre-systolic (before peak velocity) phases were identified. Following mutual information-based retrospective self-registration of DWI within each kidney, and Marchenko-Pastur Principal Component Analysis (MPPCA) denoising, combined IVIM-DTI analysis estimated mean diffusivity (MD), fractional anisotropy (FA), and eigenvalues (λi) from tissue diffusivity (Dt ), perfusion fraction (fp ), and pseudodiffusivity (Dp , Dp,axial , Dp,radial ), for each tissue (cortex/medulla, segmented on b0/FA respectively), phase, and waveform (BP, FC). Monte Carlo water diffusion simulations aided data interpretation. STATISTICAL TESTS: Mixed model regression probed differences between tissue types and pulse sequences. Univariate general linear model analysis probed variations among cardiac phases. Spearman correlations were measured between diffusion metrics and renal artery velocities. Statistical significance level was set at P < 0.05. RESULTS: Water BP and FC signal decays showed no differences. Significant pulse sequence dependence occurred for λ1 , λ3 , FA, Dp , fp , Dp,axial , Dp,radial in cortex and medulla, and medullary λ2 . Significant cortex/medulla differences occurred with BP for all metrics except MD (systole [P = 0.224]; diastole [P = 0.556]). Significant phase dependence occurred for Dp , Dp,axial , Dp,radial for BP and medullary λ1 , λ2 , λ3 , MD for FC. FA correlated significantly with velocity. Monte Carlo simulations indicated medullary measurements were consistent with a 34 µm tubule diameter. DATA CONCLUSION: Cardiac gating and flow compensation modulate of measurements of renal diffusion. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Imagem de Tensor de Difusão , Rim , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Imagem de Tensor de Difusão/métodos , Anisotropia , Estudos Prospectivos , Estudos Retrospectivos , Rim/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Movimento (Física) , Água
4.
Invest Radiol ; 58(1): 76-87, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165841

RESUMO

ABSTRACT: Magnetic resonance imaging (MRI) provides essential information for diagnosing and treating musculoskeletal disorders. Although most musculoskeletal MRI examinations are performed at 1.5 and 3.0 T, modern low-field MRI systems offer new opportunities for affordable MRI worldwide. In 2021, a 0.55 T modern low-field, whole-body MRI system with an 80-cm-wide bore was introduced for clinical use in the United States and Europe. Compared with current higher-field-strength MRI systems, the 0.55 T MRI system has a lower total ownership cost, including purchase price, installation, and maintenance. Although signal-to-noise ratios scale with field strength, modern signal transmission and receiver chains improve signal yield compared with older low-field magnetic resonance scanner generations. Advanced radiofrequency coils permit short echo spacing and overall compacter echo trains than previously possible. Deep learning-based advanced image reconstruction algorithms provide substantial improvements in perceived signal-to-noise ratios, contrast, and spatial resolution. Musculoskeletal tissue contrast evolutions behave differently at 0.55 T, which requires careful consideration when designing pulse sequences. Similar to other field strengths, parallel imaging and simultaneous multislice acquisition techniques are vital for efficient musculoskeletal MRI acquisitions. Pliable receiver coils with a more cost-effective design offer a path to more affordable surface coils and improve image quality. Whereas fat suppression is inherently more challenging at lower field strengths, chemical shift selective fat suppression is reliable and homogeneous with modern low-field MRI technology. Dixon-based gradient echo pulse sequences provide efficient and reliable multicontrast options, including postcontrast MRI. Metal artifact reduction MRI benefits substantially from the lower field strength, including slice encoding for metal artifact correction for effective metal artifact reduction of high-susceptibility metallic implants. Wide-bore scanner designs offer exciting opportunities for interventional MRI. This review provides an overview of the economical aspects, signal and image quality considerations, technological components and coils, musculoskeletal tissue relaxation times, and image contrast of modern low-field MRI and discusses the mainstream and new applications, challenges, and opportunities of musculoskeletal MRI.


Assuntos
Artefatos , Sistema Musculoesquelético , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Sistema Musculoesquelético/diagnóstico por imagem
5.
Sci Rep ; 12(1): 15010, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056131

RESUMO

Flexible radiofrequency coils for magnetic resonance imaging (MRI) have garnered attention in research and industrial communities because they provide improved accessibility and performance and can accommodate a range of anatomic postures. Most recent flexible coil developments involve customized conductors or substrate materials and/or target applications at 3 T or above. In contrast, we set out to design a flexible coil based on an off-the-shelf conductor that is suitable for operation at 0.55 T (23.55 MHz). Signal-to-noise ratio (SNR) degradation can occur in such an environment because the resistance of the coil conductor can be significant with respect to the sample. We found that resonating a commercially available RG-223 coaxial cable shield with a lumped capacitor while the inner conductor remained electrically floating gave rise to a highly effective "cable coil." A 10-cm diameter cable coil was flexible enough to wrap around the knee, an application that can benefit from flexible coils, and had similar conductor loss and SNR as a standard-of-reference rigid copper coil. A two-channel cable coil array also provided good SNR robustness against geometric variability, outperforming a two-channel coaxial coil array by 26 and 16% when the elements were overlapped by 20-40% or gapped by 30-50%, respectively. A 6-channel cable coil array was constructed for 0.55 T knee imaging. Incidental cartilage and bone pathologies were clearly delineated in T1- and T2-weighted turbo spin echo images acquired in 3-4 min with the proposed coil, suggesting that clinical quality knee imaging is feasible in an acceptable examination timeframe. Correcting for T1, the SNR measured with the cable coil was approximately threefold lower than that measured with a 1.5 T state-of-the-art 18-channel coil, which is expected given the threefold difference in main magnetic field strength. This result suggests that the 0.55 T cable coil conductor loss does not deleteriously impact SNR, which might be anticipated at low field.


Assuntos
Articulação do Joelho , Imageamento por Ressonância Magnética , Desenho de Equipamento , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
6.
Invest Radiol ; 57(8): 517-526, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35239614

RESUMO

OBJECTIVES: Despite significant progress, artifact-free visualization of the bone and soft tissues around hip arthroplasty implants remains an unmet clinical need. New-generation low-field magnetic resonance imaging (MRI) systems now include slice encoding for metal artifact correction (SEMAC), which may result in smaller metallic artifacts and better image quality than standard-of-care 1.5 T MRI. This study aims to assess the feasibility of SEMAC on a new-generation 0.55 T system, optimize the pulse protocol parameters, and compare the results with those of a standard-of-care 1.5 T MRI. MATERIALS AND METHODS: Titanium (Ti) and cobalt-chromium total hip arthroplasty implants embedded in a tissue-mimicking American Society for Testing and Materials gel phantom were evaluated using turbo spin echo, view angle tilting (VAT), and combined VAT and SEMAC (VAT + SEMAC) pulse sequences. To refine an MRI protocol at 0.55 T, the type of metal artifact reduction techniques and the effect of various pulse sequence parameters on metal artifacts were assessed through qualitative ranking of the images by 3 expert readers while taking measured spatial resolution, signal-to-noise ratios, and acquisition times into consideration. Signal-to-noise ratio efficiency and artifact size of the optimized 0.55 T protocols were compared with the 1.5 T standard and compressed-sensing SEMAC sequences. RESULTS: Overall, the VAT + SEMAC sequence with at least 6 SEMAC encoding steps for Ti and 9 for cobalt-chromium implants was ranked higher than other sequences for metal reduction ( P < 0.05). Additional SEMAC encoding partitions did not result in further metal artifact reductions. Permitting minimal residual artifacts, low magnetic susceptibility Ti constructs may be sufficiently imaged with optimized turbo spin echo sequences obviating the need for SEMAC. In cross-platform comparison, 0.55 T acquisitions using the optimized protocols are associated with 45% to 64% smaller artifacts than 1.5 T VAT + SEMAC and VAT + compressed-sensing/SEMAC protocols at the expense of a 17% to 28% reduction in signal-to-noise ratio efficiency. B 1 -related artifacts are invariably smaller at 0.55 T than 1.5 T; however, artifacts related to B 0 distortion, although frequently smaller, may appear as signal pileups at 0.55 T. CONCLUSIONS: Our results suggest that new-generation low-field SEMAC MRI reduces metal artifacts around hip arthroplasty implants to better advantage than current 1.5 T MRI standard of care. While the appearance of B 0 -related artifacts changes, reduction in B 1 -related artifacts plays a major role in the overall benefit of 0.55 T.


Assuntos
Artroplastia de Quadril , Artefatos , Cromo , Cobalto , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...